
Intel, the Intel logo, Intel® Xeon Phi™, Intel® Xeon® Processor are trademarks of Intel Corporation
in the U.S. and/or other countries. *Other names and brands may be claimed as the property of
others. See Trademarks on intel.com for full list of Intel trademarks.

Implications of a Metric for Performance Portability:
Necessity of Specialization and Application-Specific Abstractions

S. J. Pennycook, J. D. Sewall and V. W. Lee
Intel Corporation
DOE COE Performance Portability Meeting 2017, Denver, CO

Acknowledgements:
Christian Trott (Sandia National Laboratories), Tom Deakin (University of Bristol), Roland Schulz (Intel Corporation)

http://www.intel.com/sites/corporate/tradmarx.htm

© 2017 Intel Corporation

Defining “Performance Portability” (1/2)

2

“Let us not get tied up in definitions.
Performance portability means
different things to different people
and we need to accept that. Both
performance and portability are poorly
defined and depend on the
applications. Every app has different
constraints and there is no way to get
around it.”
- Unnamed Participant

DOE COE Meeting 2016
(Emphasis mine)

Image created by Randall Munroe and unmodified from https://xkcd.com/1860/, licensed under public license at https://xkcd.com/license.html (CC BY-NC 2.5), including
all disclaimers and warranties.

https://xkcd.com/1860/
https://xkcd.com/license.html
https://creativecommons.org/licenses/by-nc/2.5/

© 2017 Intel Corporation

Defining “Performance Portability” (2/2)

3

“An approach to application development,
in which developers focus on providing
portability between platforms without
sacrificing performance.”

“The ability of the same source code to
run productively on a variety of different
architectures.”

“The ability of an application to achieve a
similar high fraction of peak
performance across target devices.”

“The ability of an application to obtain the
same (or nearly the same) performance
as a variant of the code that is written
specifically for that device.”

“The ability of an application to execute
with a performance difference of less
than 2x on two different systems, without
significant software changes.”

Existing definitions are subjective and
may not reflect application performance.

© 2017 Intel Corporation

Our Proposed Definition

4

Performance Portability
“A measurement of an application’s performance efficiency for a given problem that can be executed
correctly on all platforms in a given set.”

64

128

256

512

1024

2048

4096

 1/8 1/4 1/2 1 2 4 8 16 32 64 128

G
F

L
O

P
/s

Arithmetic Intensity

Achievable

Observed

Architectural Efficiency = observed : achievable

0

100

200

300

400

500

600

1 2

G
F

L
O

P
/s

Implementation

Best-Known

Observed

Application Efficiency = observed : best-known

Performance results are for illustration purposes only and not intended to express or imply real world results.

© 2017 Intel Corporation

Our Proposed Metric

5

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

A B C D E F

P
e

rf
o

rm
a

n
ce

 E
ff

ic
ie

n
cy

Platform

Application 1 – PP(a,p,H) = 23.30%

Efficiency PP

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

A B C D E F

P
e

rf
o

rm
a

n
ce

 E
ff

ic
ie

n
cy

Platform

Application 2 – PP(a,p,H) = 20.00%

Efficiency PP

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

A B C D E F

P
e

rf
o

rm
a

n
ce

 E
ff

ic
ie

n
cy

Platform

Application 3 – PP(a,p,H) = 36.92%

Efficiency PP

𝑒𝑖 𝑎, 𝑝 = efficiency of application 𝑎 for
input problem 𝑝.

“The harmonic mean of an application’s
performance efficiency on a set of
platforms for a given problem.”

Performance results are for illustration purposes only and not intended to express or imply real world results.

© 2017 Intel Corporation

Wait! What About “Productivity”?

6

 Our definition is orthogonal to productivity, not incompatible with it:

‒ “How many source code changes are required to achieve PP of 𝑦?”

 Productivity is even more subjective than PP!

‒ Developers have different skill levels.

‒ Codes differ in size and complexity.

‒ Libraries and frameworks hide development costs.

 Attend our Breakout Session:
“Performance, Portability and Productivity: Definitions & Metrics”

© 2017 Intel Corporation

PP(a,p,H) Case Study: The BabelStream Benchmark

7

 Developed at University of Bristol; implements STREAM Triad in 7 programming languages/models:

 Results published for 12 platforms (incl. CPUs and GPUs) [1], of which we focus on 9.
Ongoing investigations into performance portability improvements [2,3].

SYCL C++ wrappers for OpenCL

RAJA Loop abstractions from Lawrence Livermore

Kokkos Device/memory abstractions from Sandia

OpenMP* (with C++) Standard pragmas for parallel programming

OpenACC* Standard pragmas for accelerator programming

CUDA* Proprietary language for stream programming

OpenCL* Standard language for stream programming

[1] T. Deakin, J. Price, M. Martineau and S. N. McIntosh-Smith, “GPU-STREAM v2.0: Benchmarking the Achievable Memory Bandwidth of Many-Core Processors Across Diverse
Parallel Programming Models”, in Proceedings of the Workshop on Performance Portable Programming Models for Accelerators, 2017
[2] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith. “Evaluating Attainable memory Bandwidth of Parallel Programming Models via BabelStream”, International Journal of
Computational Science and Engineering, 2017 (to appear)
[3] K. Raman, T. Deakin, J. Price and S. McIntosh-Smith, “Improving Achieved Memory Bandwidth from C++ Codes on Intel® Xeon Phi™ Processor (Knights Landing)”, in
Proceedings of the IXPUG Annual Spring Conference, 2017

© 2017 Intel Corporation

Performance Portability of BabelStream (2016)

8

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark,
are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should
consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products. For more complete information visit www.intel.com/benchmarks.

Intel does not control or audit third-party benchmark data or the other papers referenced in this document. You should visit the referenced documents and confirm whether
referenced data are accurate. For configuration information, see Slide 23.

http://www.intel.com/benchmarks

© 2017 Intel Corporation

Performance Portability of BabelStream (2016)

9

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark,
are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should
consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products. For more complete information visit www.intel.com/benchmarks.

Intel does not control or audit third-party benchmark data or the other papers referenced in this document. You should visit the referenced documents and confirm whether
referenced data are accurate. For configuration information, see Slide 23.

http://www.intel.com/benchmarks

© 2017 Intel Corporation

Performance Portability of BabelStream (2016)

10

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark,
are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should
consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products. For more complete information visit www.intel.com/benchmarks.

Intel does not control or audit third-party benchmark data or the other papers referenced in this document. You should visit the referenced documents and confirm whether
referenced data are accurate. For configuration information, see Slide 23.

http://www.intel.com/benchmarks

© 2017 Intel Corporation

Performance Portability of BabelStream (2017)

11

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark,
are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should
consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products. For more complete information visit www.intel.com/benchmarks.

Intel does not control or audit third-party benchmark data or the other papers referenced in this document. You should visit the referenced documents and confirm whether
referenced data are accurate. For configuration information, see Slide 24.

http://www.intel.com/benchmarks

© 2017 Intel Corporation

Implications of a Metric for Performance Portability

12

 Enables users to:

‒ Compare PP applications/libraries/framework support for their platforms

‒ Reason about which of many PP options to choose

‒ Pressure developers to focus on platforms with poor support

 Enables developers to ask:

‒ What value of PP is realistic/achievable?

‒ What value of PP should we be aiming for?

‒ What are the best development practices for achieving high values of PP?

© 2017 Intel Corporation

Performance Portability => Specialization

13

All approaches to PP specialize code for a target platform; the distinction is how/where.

Particle
List

Sorted
List

Particle
Sort

std::sort

Merge
Sort

OpenMP*

SSE AVX AVX-512

CUDA*

Kepler Maxwell Pascal

Radix Sort

Unsorted
List

Exploit domain knowledge
(e.g. particle properties)

Exploit application knowledge
(e.g. list representation)

Exploit library knowledge
(e.g. argument types)

Exploit compiler knowledge
(e.g. instruction latencies)

© 2017 Intel Corporation

Disclaimer

14

 My level of familiarity with languages frequently associated with PP is:

‒ OpenMP*

‒ CUDA* / OpenCL*

‒ Kokkos

‒ Thrust

‒ C++17

‒ RAJA

‒ OpenACC*

‒ ...all the others

 Focus (and correctness) of remaining slides follows from the above.

© 2017 Intel Corporation

Specialization Case Study (1/2)

15

 Developed four variants of several benchmarks from the CUDA* SDK:

1. CUDA

2. OpenMP*

3. Kokkos

4. Kokkos (Specialized)

 4 is a “single-source” code augmented with specialized variants of some functions.

‒ All functions have the same API irrespective of target device

‒ Each application uses a different API: “Application-Specific Abstraction”

‒ Specializations include: data layout, data accessors, functors, execution policies

© 2017 Intel Corporation

Specialization Case Study (2/2)

16

Histogram

Any
Histogram

Atomic
Updates

Small
Histogram

Atomic
Updates

Privatization

Shared
Memory

Global
Memory

Scan

Kokkos::scan Manual Scan

Block Scan

Shared
Memory

Vector
Intrinsics

Transpose

Blocked
Transpose

Nested
Loops

Shared
Memory

Vector
Intrinsics

Left-most path is the “base” version, a generic implementation that can run on any device.

© 2017 Intel Corporation

Impact of Specialization on PP(a,p,H)

17

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

histogram mandelbrot reduction rng scan transpose

P
e

rf
o

rm
a

n
ce

 P
o

rt
a

b
il

it
y

Application

PP(a,p,H) for H = {P100, KNL}, using Application Efficiency

Kokkos (Unspecialized) Kokkos (Specialized)

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark,
are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should
consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products. For more complete information visit www.intel.com/benchmarks

For configuration details, see Slide 25.

0.09%

http://www.intel.com/benchmarks

© 2017 Intel Corporation

User-Driven Specialization Today†

18

 CUDA*/OpenCL*: Query API + Just-in-Time (JIT) compilation.

 OpenMP*: Override function calls by SIMD/allocator traits.

‒ #pragma omp declare simd [clauses]

‒ #pragma omp declare alloc [clauses] ‡

 Kokkos: Specialize functionality by “Device” (“Backend”)

‒ template <class Device>

‒ void operator(Tag& tag, …) (…)

 RAJA/C++/Thrust: Specialize functionality by “Policy” (“Runtime”/”Schedule”)

‒ void ParallelFor(ExecutionPolicy& policy, int begin, int end, Functor f);

† Inexact syntax used to highlight similarities/differences between approaches.
‡ Under consideration for OpenMP TR6.

© 2017 Intel Corporation

User-Driven Specialization Tomorrow†? (1/2)

19

 Directives: Override function calls by matching traits.

‒ #pragma pp declare variant(variant-name) implements(base-name)
match(trait-name:trait-value[,trait-name:trait-value]*)

‒ #pragma pp dispatch match(trait-name[,trait-name]*)

 Example:
#pragma pp declare function match(isa)
#pragma pp declare function variant(_mm_add) match(isa:sse)
double add(double a, double b);

#pragma pp declare function implements(add) match(isa:avx512)
__m512 _mm512_add(_mm512 a, __m512 b);

#pragma pp dispatch match(isa)
c = add(a, b);

† Syntax proposed here is at the draft/prototype stage and has not been accepted by any standards or language committee.

© 2017 Intel Corporation

User-Driven Specialization Tomorrow†? (2/2)

20

 C++ (and C++ Frameworks): Override functionality by matching traits.

‒ Traits could be standardized (C++20XX) or specific to PP framework(s).

 Example:
struct functor : public pp::base
{

// inherits isa = pp::traits();
…

};

struct functor_avx512 : public pp::specialization
{

static constexpr auto isa = pp::traits(avx512);
…

};

pp::dispatch<functor,Context> f;
ParallelFor(policy, start, end, f);

† Syntax proposed here is at the draft/prototype stage and has not been accepted by any standards or language committee.

© 2017 Intel Corporation

Summary

21

 Shared definitions and metrics have many benefits and we should develop them

‒ Agree or disagree at “Performance, Portability and Productivity: Definitions & Metrics”

 Proposed a realistic approach to achieving high performance portability PP(a,p,H)

‒ Maintain a single “base” code that is expected to work anywhere (portability)

‒ User-driven specialization to override functionality for important cases (performance)

‒ Add support for this approach to standard programming languages/frameworks (productivity / maintainability)

 For more detail, see:

‒ S. J. Pennycook, J. D. Sewall, V. W. Lee, “A Metric for Performance Portability”, in Proceedings of the International
Workshop on Performance Modeling, Benchmarking and Simulation, 2016 https://arxiv.org/abs/1611.07409

‒ S. J. Pennycook, J. D. Sewall, V. W. Lee, “Implications of a Metric for Performance Portability”, in Future Generation
Computer Systems, 2017 https://doi.org/10.1016/j.future.2017.08.007

https://arxiv.org/abs/1611.07409
https://doi.org/10.1016/j.future.2017.08.007

© 2017 Intel Corporation

Legal Notices and Disclaimers

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Learn more at intel.com, or from the OEM or retailer.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration
will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more
complete information about performance and benchmark results, visit http://www.intel.com/performance.

Intel, Xeon, Xeon Phi and the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© 2017 Intel Corporation.

http://www.intel.com/performance

© 2017 Intel Corporation

Experimental Setup (1)

23

Results on Slides 8-10 from:

 T. Deakin, J. Price, M. Martineau and S. McIntosh-Smith, “GPU-STREAM v2.0:
Benchmarking the Achievable Memory Bandwidth of Many-Core Processors
Across Diverse Parallel Programming Models”, in Proceedings of the
Workshop on Performance Portable Programming Models for Accelerators,
2017 (Configuration: see Section 4)

© 2017 Intel Corporation

Experimental Setup (2)

24

Results on Slide 11 are a combination of results from:

 T. Deakin, J. Price, M. Martineau and S. McIntosh-Smith, “GPU-STREAM v2.0:
Benchmarking the Achievable Memory Bandwidth of Many-Core Processors
Across Diverse Parallel Programming Models”, in Proceedings of the Workshop on
Performance Portable Programming Models for Accelerators, 2017 (Configuration:
see Section 4)

 T. Deakin, J. Price, M. Martineau and S. McIntosh-Smith, “Evaluating Attainable
Memory Bandwidth of Parallel Programming Models via BabelStream”,
International Journal of Computational Science and Engineering, 2017 (to appear)

 K. Raman, T. Deakin, J. Price and S. McIntosh-Smith, “Improving Achieved Memory
Bandwidth from C++ Codes on Intel® Xeon Phi™ Processor (Knights Landing)”, in
Proceedings of the IXPUG Annual Spring Conference, 2017 (Configuration: see
Slide 4)

© 2017 Intel Corporation

Experimental Setup (3)

25

Results on Slide 17 and 26 use the following experimental setup:

 P100: Intel® Xeon® processor E5-1697 v4, 2.3 GHz, 2 sockets x 18 cores + Tesla P100-PCIE-16GB, BIOS:
86.00.26.00.01, ECC Enabled, Persistence Mode Disabled, Graphics/SM 405 MHz, Memory 715 MHz, CUDA
8.0.44

 KNL: Intel® Xeon Phi™ processor 7250, 68 core, 272 threads, 1400 MHz core freq. (turbo on), 1700 MHz
uncore freq., MCDRAM 16 GB 7.2 GT/s, DDR4 96GB 2400 MHz, CentOS 7.2.1511, Quad cluster mode,
MCDRAM Flat memory mode

 Versions:

‒ Kokkos: git commit da3144

‒ gcc: 4.8.5 20150623

‒ icc: 18.0.0 20170510

 Compiler Flags:

‒ P100: KOKKOS_ARCH=Maxwell KOKKOS_DEVICES=Cuda

‒ KNL: KOKKOS_ARCH=KNL KOKKOS_DEVICES=OpenMP, icpc -O3 –xMIC-AVX512

© 2017 Intel Corporation

Impact of Specialization on PP(a,p,H)

26

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary.
You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more complete information visit www.intel.com/benchmarks

For configuration details, see Slide 25.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

P100 KNL P100 KNL P100 KNL P100 KNL P100 KNL P100 KNL

histogram mandelbrot reduction rng scan transpose

A
p

p
li

ca
ti

o
n

 E
ff

ic
ie

n
cy

Unspecialized Specialized

http://www.intel.com/benchmarks

